skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Casey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Spontaneous ionization/breakup of water at the surface of aqueous droplets has been reported with evidence ranging from formation of hydrogen peroxide and hydroxyl radicals, indicated by ions atm/z36 attributed to OH⋅‐H3O+or (H2O‐OH2)+⋅ as well as oxidation products of radical scavengers in mass spectra of water droplets formed by pneumatic nebulization. Here, aqueous droplets are formed both by nanoelectrospray, which produces highly charged nanodrops with initial diameters ~100 nm, and a vibrating mesh nebulizer, which produces 2–20 μm droplets that are initially less highly charged. The lifetimes of these droplets range from 10s of μs to 560 ms and the surface‐to‐volume ratios span ~100‐fold range. No ions atm/z36 are detected with pure water, nor are significant oxidation products for the two radical scavengers that were previously reported to be formed in high abundance. These and other results indicate that prior conclusions about spontaneous hydroxyl radical formation in unactivated water droplets are not supported by the evidence and that water appears to be stable at droplet surfaces over a wide range of droplet size, charge and lifetime. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  2. Free, publicly-accessible full text available January 29, 2026
  3. Plasmonic nanoparticle-based biosensors often report a colorimetric signal through the aggregation or clustering of the nanoparticles (NPs), but these mechanisms typically struggle to function in complex biofluids. Here, we report a matrixinsensitive sensor array approach to detect bacteria, fungi, and viruses whose signal is based on the dissociation of the peptideaggregated NPs by thiolated polyethylene glycol (HS-PEG) polymers. We show that the HS-PEGs of differing sizes have varying capabilities to dissociate citrate-capped gold nanoparticle (AuNP) and silver nanoparticle (AgNP) assemblies. The dissociative abilities of the HS-PEGs were used in this sensor array to discriminate at the 90% confidence level the microorganisms Porphyromonas gingivalis, Fusobacterium nucleatum, and Candida albicans in water and saliva using linear discriminant analysis (LDA). We further demonstrate the versatility of the sensor array by detecting various subtypes of the viruses SARS-CoV-2 (beta, delta, and omicron) and influenza (H3N2) spiked in saliva samples using LDA. In the final demonstration, the sensor array design stratified healthy saliva samples from patient samples diagnosed with periodontitis as well as COVID-19. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025
  4. Accelerated reactions in microdroplets have been reported for a wide range of reactions with some microdroplet reactions occurring over a million times faster than the same reaction in bulk solution. Unique chemistry at the air–water interface has been implicated as a primary factor for accelerated reaction rates, but the role of analyte concentration in evaporating droplets has not been as well studied. Here, theta-glass electrospray emitters and mass spectrometry are used to rapidly mix two solutions on the low to sub-microsecond time scale and produce aqueous nanodrops with different sizes and lifetimes. We demonstrate that for a simple bimolecular reaction where surface chemistry does not appear to play a role, reaction rate acceleration factors are between 10 2 and 10 7 for different initial solution concentrations, and these values do not depend on nanodrop size. A rate acceleration factor of 10 7 is among the highest reported and can be attributed to concentration of analyte molecules, initially far apart in dilute solution, but brought into close proximity in the nanodrop through evaporation of solvent from the nanodrops prior to ion formation. These data indicate that analyte concentration phenomenon is a significant factor in reaction acceleration where droplet volume throughout the experiment is not carefully controlled. 
    more » « less
  5. Objective:To develop a novel technique for localizing and reconstructing the greater palatine artery (GPA) using three-dimensional (3D) technology. Methods:A miniaturized intraoral ultrasound transducer was used to imaging landmarks including the GPA, gingival margin (GM), and palatal masticatory mucosa (PMM). A 5-mm-thick solid hydrogel couplant was integrated to replace traditional ultrasound gel and avoid bubbles when moving the transducer. Results:A panorama image provided the relative localization of landmarks including the GPA, PMM, and hard palate. Short- and long-axis imaging of GPA was performed in five subjects including 3D mapping of GPA branches and surrounding tissues in a volume of 10 mm × 8 mm × 10 mm. Full-mouth Doppler imaging was also demonstrated on both the dorsal and ventral tongue as well as buccal mucosa and sublingual region on two subjects. Conclusions:This study can measure the vertical distance from the GM to the GPA and depth from PMM to GPA and visualize the GPA localization in a 3D manner, which is critical to evaluate the available volume of palatal donor tissues and avoid sectioning of GPA during surgical harvesting of the tissues. Finally, the transducer’s small size facilitates full-mouth Doppler imaging with the potential to improve the assessment, diagnosis, and management of oral mucosa. 
    more » « less